
JOURNAL OF AIRCRAFT

Vol. 38, No. 5, September–October 2001

Hybrid-System Simulation for National
Airspace System Safety Analysis

A. R. Pritchett,¤ S. M. Lee,† and D. Goldsman‡

Georgia Institute of Technology, Atlanta, Georgia 30332-0205

Analysisof large, complex systems requires simulationsofhybrid-system dynamics (i.e., dynamicsbest described
bya combinationof continuous-timeanddiscrete-event models)and their interactions.To serve asvaluableresearch
tools, such simulations must also be computationally ef� cient, readily modi� able, capable of simulating systems
using models of a wide range of � delity, and easily recon� gurable to simulate parts or all of the system of interest.
The development of a simulation architecture meeting these criteria is described. Issues with its development are
described conceptually, and its application to safety analysis of the national airspace system is discussed. In partic-
ular, an object-oriented approach to hybrid-system simulationis detailed, and computationallyef� cient methods of
updatingthe simulationare described and compared. New asynchronouswith resynchronizationmethods of timing
individual objects are applied in an example, demonstrating a signi� cant improvement in simulation ef� ciency.

Introduction

M ANY large, complex systems are hybrid in nature (i.e., they
need both continuous-timeand discrete-eventmodels to de-

scribe their behavior), and these models are not separable, but in-
stead must interact in signi� cant ways. A simulation capable of
recreating these hybrid-system dynamics provides an analysis tool
that can dramatically change the design process. In electronics,
for example, integrated circuits were purposely designed to have
componentsspaced far apart until simulationscapableof predicting
electromagnetic interferencecould be used to analyze and redesign
smaller chips.1 Many aerospace systems also are best captured by
hybrid-systemsimulations, ranging from aircraft with � ight control
systems that changemodes, to on-boardsystemswith discontinuous
behaviors such as open-closed mechanisms.

Take, for example, the task of performing safety analysis on the
national airspace system (NAS). Merely simulating the trajectories
of the aircraft would not capture the discrete actions of controllers;
likewise, continuous-time simulation architectures would not be
well suited for inserting aircraft into the airspace at random times
or for the stochastic injectionof disturbances.Elements of NAS dy-
namics have most often been simulated using purely discrete-event
simulations such as SIMMOD2; however, such models do not have
the resolution to capture a range of safety issues. Similiarly, hybrid-
system simulations have been made of the NAS such as TAAM and
HERMES, but these are typically limited to speci� c applications,
speci� c model resolutions, or isolated parts of the NAS.2;3

To serve as an effective design tool, simulation of large-scale
systemsmust alsomeet a numberof practicalrequirements.First, the
simulation should be rapidly recon� gurable. As a practical matter,
this eases thecostof developinga simulation;rapid recon� gurability
also allows for the simulation to be applied to a rangeof applications
and to accommodate models of varying form and � delity as needed
for the task at hand.In addition,the simulationshouldbe suf� ciently
computationallyef� cient that it can providea time-effectiveanalysis
tool, even when large numbers of runs are required.

This paper discusses issues involvinghybrid simulation, with the
thesis that many of these issues can be solved by an object-oriented
software architecture. Such an architecture handles the communi-

Received 21 December 2000; revision received 11 April 2001; accepted
for publication 12 April 2001. Copyright c° 2001 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

¤Assistant Professor, School of Industrial and Systems Engineering and
Aerospace Engineering. Member AIAA.

†Graduate Research Assistant, School of Industrial and Systems Engi-
neering.

‡Professor, School of Industrial and Systems Engineering.

cation between objects without needing to treat objects differently
based on the type of their underlying model, thereby meeting the
rapid recon� gurability requirement.Likewise, this type of architec-
ture can be constructed to control the timing and updating of the
elements in a computationallyef� cient manner.

First, a comparison is made of the fundamental differences and
similarities between continuous-time and discrete-event models.
Then the test case used in this paper, the safety analysisof the NAS,
is described. Conceptual issues in, and requirements of, hybrid-
system simulations are discussed, and then a simulation software
architecture is presented. Methods of controlling simulator timing
are described, illustrated by comparisons from the test case and
a speci� c demonstration from a simulation of a standard terminal
arrival route (STAR).

Background: Discrete-Event
and Continuous-Time Models

Important, fundamental differences exist between discrete-event
and continuous-time models, as shown in Table 1. Discrete-event
models typicallyattempt to de� ne the state of a system by categoriz-
ing whether conditionsexist or by quantifyingthe numberof entities
within a category. Therefore, they can describe the system without
attempting to capture internal dynamics. Their de� ning parameters
stipulate how and when states will transition from one to another.
These parameters are typically set by experimental observation of
existing systems to capture the stochastic nature of the system. As
such, discrete events are well suited for modeling systems made
of multiple entities with no internal dynamics of relevance to the
type of analysisbeingconducted,and discrete-eventmodels usually
require study of an establishedsystem to ascertain their parameters.

Continuous-time models, on the other hand, usually attempt to
model the internal dynamics of system components. System state
is typically de� ned as a measure of the magnitude and distribution
of energy within the system, such as vector-valuedmeasures of po-
sition and velocity. These models are often physics-based, that is,
they can be developed before the system is built and can be mea-
sured. However, these models are usually described by differential
equations, which can be computationally expensive to propagate
forward through time. (A related model type, that of discrete-time
systems, is modeled using difference equations4 and can be treated
as a special class of continuous-timemodels.)

These two types of models, applied to the same system, tend to
have very different rates at which the states need to be updated.
Continuous-time models are solved through numerical integration
(or transition) algorithmsthat approximatethecontinuousvariations
by updates at discrete intervals. These intervals (or time steps), at
the very least, must be at twice the rate that the dynamics of interest

835



836 PRITCHETT, LEE, AND GOLDSMAN

Table 1 Comparison of continuous-time and discrete-event models

Attribute Continuous-time models Discrete-event models

System being Speci� c mechanical unit with Multiple, often simple, entities
simulated complex functioning

De� nition of system Continuous and vector-valued, Discrete, for example, categorization of
state for example, magnitude and distribution current system properties

of energy within system
Typical measures of Position, attitude, and velocity Queue size, incidence

system state (deterministic) (statistical properties thereof)
Typical factor Time Transitions from state to state

driving updates
Common purpose Analyze deterministic dynamic Analyze stochastic nature of

of simulation behavior of a mechanical unit interactions between entities
Common uses Design and analysis of unit, Analysis and planning of

(real-time) training operations with multiple entities

occur to capture their basic properties5; in most applications, the
time step is set much smaller than this to reduce error in the numer-
ical solutions.6 Discrete events, on the other hand, typically capture
fairly large changes in dynamics and need to occur less often. In
some cases, the update rates for the two types of models may differ
by several orders of magnitude.

Comparisonsof these two typesof models are conceptualdistinc-
tionsonly. It hasbeenprovenpossibleto incorporatemodelsofeither
type into simulation software intended for the other. For example,
continuous-timemodels have been merged into discrete-eventsim-
ulations by � tting updates in their state values into mechanisms for
discretetransitionswith � xed, small transitiontimes.However, it has
also been noted that such cross-implementation often requires re-
strictiveassumptionson the models, limits their accuracy, increases
thecomplexityof the software,andoftenresultsin a computationally
inef� cient simulation.7;8 Thus, these differencesare of dramatic im-
port to the simulation designer because the simulation architecture
is typically tailored to the type of model implicit in the simulation.

Test Case: Safety Analysis of the NAS
At its full extent, the NAS is a system of overwhelming com-

plexity. Thousands of aircraft may be aloft at one time; hundredsof
controllersare monitoringand directing them with the assistanceof
many communication and surveillance technologies. Furthermore,
distinctionsmust often be made between the different types of con-
trollers (ground, tower, terminal area, en route, etc.) and their hierar-
chies; likewise, aircraftcan be of many different types with different
performance, and their pilots may have a wide range of goals and
levels of experience.

The behaviorof the NAS, to a great extent, is de� ned by the inter-
action of these different elements. The NAS can not be modeled as
a collection of independent aircraft � ying simultaneously; instead,
controllers (and pilots) are constantly changing direction of � ight
in response to the actions of others and to changes in the environ-
ment. These interactionsmay meet a number of goals, ranging from
time-criticalcollisionavoidancemaneuversto strategicplans for air
traf� c � ow management.

To meet increasingcapacitydemandsandstrictersafetydemands,
the NAS is being upgraded. These upgrades range in scale from
near-term equipment improvements to longer-term calls to change
the manner in which controllers and pilots interact.

Changing such a large and complex system creates a design prob-
lem of vast scale. For both cost and safety reasons, changes should
be analyzed thoroughly before implementation. The worth of this
analysis will be measured by its ability to predict and correct prob-
lems before implementation. Simulation and modeling have been
recognized as a critical part of this analysis.9

The NAS has been simulated before. However, most of these
simulations have not been suitable for large-scale safety analysis.
Instead, many NAS simulations have been motivated by studies of
ef� ciency. Therefore, these simulations have been concerned with
values such as aircraft interarrival times or � ight delays. These con-
cerns are best abstracted by macroscopic models and, hence, have
usually been covered by discrete-event simulations or simulations
with very simple models of aircraft behavior.2;3

Safety, on the other hand, is largely determined by continuously
evolving interactions that macroscopic discrete-event simulations
can not capture.For example, a macroscopicsimulationmay model
when two aircraft arrive at an airport; without detailed modeling
of their continuous trajectories, however, it is nearly impossible to
ascertain accurately whether these two aircraft came unacceptably
close during their � ights, or to model the performance of humans
such as pilots and controllers with suitable resolution. Therefore,
simulation suitable for safety analysis needs better resolution of
some parts of the system than can be readily provided by discrete
events alone.

The most notableelementrequiringadequateresolutionis the tra-
jectory of the aircraft itself. Because they are most accurately rep-
resented by differential equations, aircraft trajectories are usually
best modeled as continuous-timeobjects. Fortunately, many excel-
lent models are currently available at all levels of � delity, ranging
from outer-loop models of the aircraft’s guidance to detailed inner-
loop models of the aircraft’s � ight dynamics.10 12 These models
are physics based, which allows their parameters to be estimated (if
not exactly known), and brings predictive power to the simulation
where novel NAS changesare to be simulatedbefore measurements
of actual dynamics can be observed.

Other elements of NAS behavior remain best modeled as discrete
events, for a variety of reasons. Some elements can be predicted to
occur discretely; for example, the generation of a queue of aircraft
waiting for taxi clearance to the takeoff runway is discrete in nature.
Other elements of the NAS are not needed at a � ne resolution,
and so computational effort can be saved by reducing them to a
notable state; for example, a detailed, computationally expensive
continuous-time model of an aircraft waiting for takeoff can be
temporarily replaced by a notation in the takeoff queue. Finally,
discrete events can be used to inject stochastic phenomena into the
simulation, such as errors and failures, as well as disturbances into
aircraft and human performance model parameters.

MeasurementsofNAS safetycan alsobe treatedas discreteevents
that occur when threshold conditions in the environment are met,
such as loss of separation between two aircraft. Unlike normal dis-
crete events, these measurements do not need to trigger subsequent
eventsin the simulation,beyondrecordingtheevent to an output� le.
However, these measurements can share the computational struc-
tures that are used for other discrete events.

Of critical importance in NAS safety simulation is inclusion of
human performance models because their behavior drives system
dynamics. Their behavior should not be typecast into either contin-
uous or discrete forms; in addition,many establishedmodels would
be dif� cult to convert to � t within any one rigidlyde� ned simulation
architecture.For example, many human performancemodels can be
based on procedures or expert systems that call for isolated actions
to be triggered by conditions in the environment (discretely) while
also maintaining a continuouslyevolving valuation of workload or
working memory content.13

Therefore, a simulation architecture capable of accommodating
the many different types of models can provide a valuable re-
search tool. For such a tool to also be cost effective, it must also
be rapidly recon� gurable. This recon�gurability can allow for the



PRITCHETT, LEE, AND GOLDSMAN 837

same architectureand models to be used in simulations of different
elements of the NAS and in simulationswith differentpurposes, for
example, capacity studies vs detailed safety analysis. Thus, a cor-
respondingbene� t of recon� gurability can be a dramatic reduction
in the cost of developing a simulation through the reuse of models
and computational structures.

Hybrid-System Simulation Concepts
In caseswherean elegant,analyticsolutioncan notbe foundto an-

alyze a system represented by purely discrete-eventor continuous-
time models, a hybrid-system simulation is required to calculate
system dynamics through time. Several approaches have been sug-
gested for the design of hybrid-system simulations. Some create
larger metamodel frameworks in which each type of simulation
functions separately.1;14 Other solutions have adapted existing sim-
ulations of one type to include the other.15;16

A third approach, sometimes called the fully integrated app-
roach,1 seeks to create new software that inherently accepts the two
model types. Such approaches have been undertaken with special
modelinglanguages.8;17 20 This paperwill insteadfocuson software
architectures(not necessarily written in special languages) that can
accept models of any type, control their timing in computation-
ally ef� cient mechanisms, and handle communication between the
objects.

Earlier sections have highlighted the differences between the
models used in hybrid-system simulation. A simulation architec-
ture can capitalize on the abilities these models share: to update
themselves when required, to report when their next update is re-
quired, and to report interactions with other objects that warrant a
joint update.

At a high level, a simulationarchitecturecan require components
to meet these three interfacerequirements.All other dynamicsof the
components can remain internal to their models, without requiring
intervention by the larger simulation architecture.This internalism
can be considered a feature. It prevents fundamental restrictionson
the type of model allowed in the simulation, and as such, it allows
for the simulation to include components of various resolutions as
required by the task at hand.21;22

Without placing restrictions on components’ models, the simu-
lation architecture also needs to support their interactions. These
interactionsmay take several forms. Traditional to continuous-time
simulation is coupling between different continuous-time objects,
such as two aircraft � ying in formation (or executingavoidancema-
neuvers) and, therefore, reacting to the movements of each other. A
discrete event may also impact a continuous-time object in several
ways: It may enact a discrete change in the variables maintained by
the continuous-timeobject (such as a sudden change in acceleration
due to the application of brakes or engine failure); it may change
a parameter’s value within the continuous-time object (such as a
change in stability derivatives in response to a discrete change in
aircraft con� guration); or it may swap in a whole new continuous-
time model better suited to the situation (such as inclusion of a
higher � delity aircraft model at the start of an avoidancemaneuver,
or a switch to a taxiing aircraft model after landing). Conversely,
continuous-timeobjectscan interactwith discrete events when their
values correspond to the events’ triggers.

Within a simulation framework that supports such interactions,
the simulationdesigneris able to make componentswork ef� ciently
on their own. For example, in modeling an aircraft with onboard
systems that have discrete dynamics, the simulation designer has
choices beyond the usual requirement that these two behaviors be
kept common in one model, despite their two different timescales.
Instead, the designer has the option of making the onboard systems
into a separate discrete-event model that communicates appropri-
ately with the continuous-timemodel of the aircraftdynamics.Such
an approachallows the simulationdesignerto separatebehaviorsac-
cording to the times at which they will need to be updated without
substantial reworkings within individual components.17

Although a simulation’s operation does not depend on measure-
ments, the desire for accurate measurements is typically the mo-
tivation for the simulation. In many cases, the measurements are
temporal in nature, and, hence, it is important that a measurement

be taken exactly when it occurs. One approach is to make mea-
surements an active element by treating them as discrete events that
must report when they must next be updated. This projected up-
date time can be a conservative estimate of when the conditions
wanting recording may next occur. Although this process requires
measurements to have a predictive power, it also reduces the need
for unnecessarymeasurements.This also mirrors a duality between
measurements and conditionallybased discrete events; whereas the
former haveno lasting impact on simulationdynamics, the latter are
measurements with a consequence.

Based on this discussion, several requirements for a hybrid-
system simulationarchitecturemay be summarized.First, the simu-
lation architectureshould not place unnecessary limits on the types
of objects, but instead accommodate any components that can list
their update times and update themselveson command. Second, the
simulation architecture should facilitate communication between
objects, so that it is easy for the simulation designer to break apart
models accordingto their functionalityand update rates, without re-
quiring lengthy communication standards to be developed. Finally,
the simulation architectureshould be capable of timing the updates
of the individualcomponents in a computationallyef� cient manner.

Simulation Architecture
The preceding sections discussed conceptual issues with hybrid-

system simulation. This section discusses a particular simulator ar-
chitecturedesign.This architectureextends the recon� gurable � ight
simulator software, which was originally designed for more tradi-
tional applications of � ight simulation.23

This architectureallows for the inclusionof several broad classes
of objects, as shown schematically in Fig. 1. An arbitrary num-
ber of vehicles can be added to the vehicle list. These components
must � t a base interface for vehicles,which was designed to support
continuous-time models of vehicle dynamics; for speci� c applica-
tions, base interfaces have also been de� ned for aircraft and for
spacecraft. Several vehicle components, including six-degree-of-
freedom and waypoint-followingaircraft, have been developedand
can be used or extended by other developers.

Beyond these capabilities as a normal � ight simulator, an arbi-
trary number of controller, event, and measurement (CEM) objects
can be added to a dedicated list. The base interface standards for
these objects are less speci� ed, allowing � exibility in the objects’
behaviors. Components that have been added to date include ran-
dom aircraft generators that place aircraft into airspace according
to a given distribution of interarrival times, basic air traf� c con-
trollers that determine aircraft sequences in merging arrival streams
and then command speeds to aircraft to maintain proper spacing
within the traf� c streams, and measurementobjects that look for and
record events speci� ed in a text script. The � exibility of this type
of component allows for many other types of human performance
models, discrete-eventgeneration,and measurementcomponentsto
be added as desired.

Other types of components are also available in the simulation
architecture as support for hybrid-system simulation needs. Most
of the components needed for this application are already estab-
lished, but these componentscan be modi� ed or added to as desired.

Fig. 1 Schematic of component classes in simulation architecture.



838 PRITCHETT, LEE, AND GOLDSMAN

Input–output (I/O) objectsprovidemechanismsfor graphicaloutput
of the simulation (such as an air traf� c control screen and text out-
put of commands given by controllers) and for data recordingof the
measurements.The environmentcontroller and database providesa
common simulationenvironmentfor all of the componentsby estab-
lishingcommonaxisde� nitionsandconversionsand by allowingfor
the inclusion of atmospheric and terrain models as desired. Finally,
a networking object can be included to handle communications be-
tween simulations run on multiple machines over a network; this
networking is transparent to the rest of the simulation and, there-
fore, does not require recompilationof components to use or access
networking functions.

To functionas a hybrid-systemsimulation,each continuous-time,
discrete-event,and measurementobject is required to meet the min-
imal standards of a standard interface. Speci� cally, each of these
componentsmust update its state on command, report the time of its
next update (or, in the case of some measurementand discrete-event
objects, the next time at which an update might occur conditionally
on other events), and identify whether its own update requires any
other objects to also update.

For continuous-timeobjects, a required input is an upper bound
on the numerical error allowable in each time step. With this input,
the next update time is calculatedbasedon knowledgeof the interior
dynamics; algorithms for such adaptive time step calculations are
well established.6

Communications between objects are handled by the high-level
simulation object. Therefore, the designer of a hybrid-system sim-
ulation using this architecture does not need to develop commu-
nication standards beyond giving individual components the abil-
ity to send and receive messages. Many standard messages can be
passed through the base interface standards of vehicle and con-
troller/measurement objects. Those messages that do not � t within
the base interface standards can be sent through the simulator ob-
ject via the object data/methods extensionsprotocol,which requires
sending a message to the simulator object along with a request for
its destination.23 This mechanism also allows for objects to request
the creation or destruction of other objects; for example, a random
aircraftgeneratorcan request the additionof a new aircraft to the ve-
hicle list, with subsequentmessages to that new aircraft that provide
it with initializationdata.

This architecture, therefore, provides an overall framework that
can simulate any NAS con� guration at any level of � delity. It is
con� gured by incorporating new components during run time as
speci� ed by initialization commands and operator input. Thus, de-
velopmentof a new con� gurationdoes not requirea new or different
simulation architecture; instead, the development of new initializa-
tion scripts describes the simulator con� guration, and the inclusion
of new or modi� ed components can extend the models used in the
simulation.

Ef� ciency and Timing Methods
In large-scalesimulation,concernswith computationalef� ciency

extendbeyondmakingeach componentindividuallyef� cient.Over-
all ef� ciency is achieved when each object updates only when
needed to meet several criteria: accurate modeling of its interior
dynamics, correct interaction with other objects, and timely mea-
surements.

Any unnecessaryupdatesof objectsmay beconsideredwasteduse
of the processor.However,methodsof decidingwhenan updatemay
be required for correct interactions or measurements are generally
nonexact once the simulation is run in a con� guration containing
stochasticelementsand/or is nontrivialin size.Likewise, theamount
of computation required by the most sophisticated timing methods
may be signi� cant and can slow down the simulation.

Even measuring the computationalef� ciency of a simulation can
be nontrivial. Once the simulation includes stochastic elements, it
can be dif� cult to comparewith certaintythe relativespeedof differ-
ent update timing methods without a large number of runs because
the simulation runs will have different system dynamics due to the
inclusionof random disturbancesor anomalies.Likewise, measures
of simulation ef� ciency based on run time are highly sensitive not

only to the speci� c scenario under test and basic processor speed,
but also to many other aspects of the simulation hardware such as
data-access speed, memory size, etc.

This section will compare different timing methods and illustrate
their effect on a representativesimulationusing the architecturede-
scribed in the preceding section.Then trade-offs in the fundamental
characteristicsof thesemethodsare discussed,and alternativemeth-
ods are commented on.

Timing Methods

Two major factors de� ne the variety of methods for determining
the timing of simulationcomponents:the � rst is selectionof how the
time step is set (next-event time advance, or � xed-increment time
advance)24; the second is selectionas to whether the simulationwill
be entirely synchronous, that is, all components update at the same
time; partially synchronous and partially asynchronous;or entirely
asynchronous,that is, all components update individually.

Several timing methods can be de� ned by these two factors, as
follows.

Synchronous Fixed Time Step

This timing method updates all objects at the same time, with the
time step externally � xed through the simulation. This method is
commonly used in current � ight simulation techniques, where the
time step may be � xed by conservative analysis of the fastest dy-
namics in the system,or by the system clock in real-timesimulation.
This method is very basic and is often the � rst step in the develop-
ment of a hybrid-system simulation. It also provides conservative
results that can be guaranteed to not miss any measurements or in-
teractions by the setting of an arbitrarily small time step, without
requiring predictions from discrete-event or measurement objects.
However, it also forces all objects to update at a rate governed by a
conservative,worst-caseestimateof the dynamicsof the component
with the fastest response, which is computationally inef� cient.

Synchronous Variable Time Step

This timing method has all of the objects update at the same time,
but varies the update time from one time step to the next to meet the
needsof the simulation.For instance, the update time may be chosen
by polling all objects for their desired time step and then selecting
the worst-case (smallest) time step. This method still forces some
objects to update more often than they would require when running
alone, but it can relax the time step when conditions allow.

Asynchronous with Resynchronization

This timing method allows for components to be updated inde-
pendentlyfollowingtheir own update times. This is shown schemat-
ically in Fig. 2 for a simulation with four aircraft, a random aircraft
generator (RAG) and a measurement object; the aircraft and RAG
update at their own rates until a measurement requires a complete
synchronization.This allows for objects with fast dynamics to up-
date frequentlywithout requiring other objects to be bound by such
small time steps. However, this method also allows for objects that
interact, or that measure interactions, to require all objects (or spe-
ci� c objects) to resynchronizewhen it is time for their update, with
the result that interactionsand measurementscan be basedon values
from temporally collocated objects.

This timing method requires a state-updater object to maintain
a list of the objects within the simulation, sorted by the time of

Fig. 2 Schematic of asynchronous simulation with resynchronization.



PRITCHETT, LEE, AND GOLDSMAN 839

Fig. 3 Schematic of sorting of simulation components by update time,
with access by state-updater component.

Fig. 4 Average number of calls to aircraft objects during simulation
of a STAR comparing two timing methods, with varied mean aircraft
interarrival times.

their next desired update. This object is shown schematically in
Fig. 3. This state-updaterobject then controls the simulation timing
by identifying the next object to be updated, regardless of type,
querying that object as to whether it requiresother objects to also be
updated, and commanding the appropriate objects to update. Once
objects have been updated, they each are asked for their new update
time and are sorted accordingly.

Example: Simulation of a STAR

To compare the computationalef� ciency of these methods, a nu-
merical simulation was conducted using the architecture described
earlier.The simulationmodeled the stream of arrivingaircraft � ying
the Macey Two STAR into Atlanta–Harts� eld airport.Aircraft were
injected into the simulation stochastically with a speci� ed inter-
arrival rate. A controller scheduled the aircraft from the multiple
entry streams into one arrival � ow by selecting the appropriate or-
der of the aircraft and commandingspeeds to the aircraft that would
create this desired traf� c pattern. The aircraft were removed from
the simulation when they reached the runway.

The results of this simulation are shown in Fig. 4. Ef� ciency in
this case is measuredby the averagenumberof times aircraftobjects
are called to updateduringthe courseof the run due to both theirown
desired rate as well as forced resynchronizations. Aircraft are the

most computationallyintensiveobjects in the simulation; therefore,
a lower number of calls, on average, to individualaircraft represents
greater computationalef� ciency.

The data are shown for two timing methods. The synchronous
variable time step method required all objects in the simulation
to update at the same time, using the worst-case time step identi-
� ed from all of the objects. In the asynchronous with resynchro-
nization method, the controller and measurement objects were al-
lowed to command a complete resynchronization at times when
they predicteda con� ict might occur or the next command might be
warranted. The aircraft mean interarrival time into the arrival route
was also varied.The highestmean interarrivaltime (500 s) created a
fairly low traf� c density, with commensurately few interactions.At
this mean interarrival time, the bene� ts of asynchronoussimulation
are noticeable, but not dramatic.

The lowest mean interarrival time (100 s) created a high traf-
� c density, in which controller commands and aircraft maneuvers
in response to potential con� icts were often required. In the syn-
chronous variable time step method, this had the effect of requiring
many more updates for all aircraft on average. In the asynchronous
with resynchronizationmethod, fewer updates were required over-
all because those aircraft needing updates at small intervals were
able to update independently.

Tradeoffs Between Resynchronization Intervals and Ef� ciency

In applications such as just shown in the case study, there appear
to be bene� ts to asynchronous timing methods. At � rst glance, this
appears to imply that the best ef� ciency will arise with the largest
resynchronization intervals, which allows the objects to run asyn-
chronously for signi� cant portions of the simulation. However, two
main issues limit the size of resynchronizationintervals.

First, larger resynchronizationintervals require better (and more
computationally expensive) predictions by the individual compo-
nents about when a resynchronization may be warranted. Better
predictions require more extensive calculations; at an extreme, the
predictor would need to internally simulate other objects to predict
accuratelywhen a problem might occur. As such, the value of better
predictionscan reacha point of diminishingreturns,where the addi-
tional computationsin the predictionsused to set resynchronization
intervals offset any savings in computations by the objects that are
affected.

Second, larger resynchronization intervals require better (and
model speci� c) predictions by the individual components about
when a resynchronization may occur. Simple predictions about a
potentialaircraftcollision, for example, can be made based on com-
monly available aircraft position and velocity; more accurate pre-
dictions require knowledge of aircraft internal dynamics and likely
future actions. This imposes an obvious development cost on the
simulation. It also makes such smart predictors dif� cult to use in
simulations where a large variety of objects may be involved in the
prediction, limits the use of the predictors to speci� c cases, and
reduces the ease with which the simulation can be recon�gured.

Alternatives to Resynchronization

Thus far, this discussion on simulation timing has assumed that
accuratemeasurementsand interactionscanonly occurwhen the ob-
jects involved are temporally collocated, with the implication that
occasional resynchronizationis always required. It is also possible
for measurements and interactionsto be calculatedfrom temporally
disjoint objects. Of course, such calculations tend to be more com-
plex, but with such a capabilityfewer resynchronizationsare needed
solely to make measurements or predictionsabout the future. How-
ever, at least partial resynchronizationswill still be required when
predictedinteractionsrequire other objects to jointlymanifest a new
behavior at a certain time, for example, a predicted collision avoid-
ance alert requiring two aircraft to synchronizeand communicateat
the start of the alert. Likewise, in a simulation with stochastic ele-
ments, such predictionscan not be made with certainty and, hence,
remain susceptible to missed measurements.

Similiarly, it has been assumed that the simulation always runs
forward in time. This assumption generates conservative timing



840 PRITCHETT, LEE, AND GOLDSMAN

intervals to avoid missing any important interactions. For some ap-
plications, simulations capable of running backward to a potential
missed interaction are possible, with the bene� t of relaxing timing
intervals.25 27 However, these rollbackor timewarp simulationscan
� t better in some domains than others; some types of models are
easier to either run backward or store their recent state space so that
the simulator can be backed up to before the missed problem (such
methods have most commonly been applied to systems with purely
discrete dynamics or very simple continuous-time models). Like-
wise, these methods incur a computational cost and, hence, should
be used wisely.

Conclusion
This paper has discussed issues relating to simulating large, com-

plex systems as an analysis method during their design. Hybrid-
system simulation is an emerging � eld of interest with the poten-
tial to provide such an analysis tool. Simulation of the NAS for
safety analysis was used as a test case throughout the paper, with a
speci� c simulation con� guration detailed as an example. This ap-
plication shares many of the qualities (and requirements) of other
aerospace systems. For example, large-scale simulations of many
operationalsystemsarenow beingproposed,includingmilitarymis-
sion planningand spacecraftlaunchand rangeoperations.Likewise,
detailedanalysisof a singlevehicle’s avionicssystems requiressim-
ulating both aircraft dynamics and discrete transitions in mechani-
cal, electronic, and software onboard systems.

Several open issues remain with hybrid-systemsimulation.Some
can be addressed by software architectures. This paper suggested
that such anarchitectureshouldplace few restrictionson the typesof
models allowed, so that it can be used for a variety of purposes and
with componentsof varying � delity and resolution; this also has the
practical bene� t that existing models can be used without substan-
tial restructuring.The behavior and performance metrics of hybrid
systems both rely on interactions between individual components;
as such, a simulation architecture also needs to capture accurately
and/or create these interactions.

Methodsof making the simulationas computationallyef� cient as
possible are important. Rather than reducing the need for computa-
tionalef� ciency,recent improvementsin computationalpowerhave,
for the � rst time, allowed the research community to hope that very
large, very complex systems can be simulated in detail. As these
simulations become more widely used, there may be increasingde-
mand for more � delity, more accuracy,and for more simulationruns
in an analysis seeking statistically veri� able results.

Methods of timing object updates within a large-scale, hybrid-
system simulationhave been identi� ed as a research topic requiring
investigation.19 This paper discussed timing the updates of individ-
ual objects within a large-scale simulation. Two speci� c mecha-
nisms were discussed: variable time steps and asynchronoussimu-
lation with occasional resynchronization to capture measurements
and interactions. A simulation architecture was described that met
the requirements and mechanisms discussed in the paper. This
simulation architecture uses an object-oriented framework to ac-
cept objects of a wide variety of types, easily incorporating both
continuous-time and discrete-event models. As an example, this
simulation architecture was used to simulate the dynamics of a
STAR; methods of improved simulation timing were found to in-
crease signi� cantly computational ef� ciency of the simulation as a
whole.

Acknowledgments
This work was funded by the NASA Ames Research Center un-

der Grant NAG 2-1291, with Irv Statler, Mary Conners, and Kevin
Corker administeringand serving as technicalpointsof contact.The
authors would also like to thank the people who have contributed
to the developmentof the simulation, including Serhan Ziya, Corey
Ippolito, David Huang, and Ted Chen. Portions of this paper were
presentedat the 2000AIAA Modelingand SimulationTechnologies
Conference and the 2000 Winter Simulation Conference.

References
1Saleh, R., Jou, S. J., and Newton, A. R., Mixed-Mode Simulation and

Analog Multilevel Simulation, Kluwer, Boston, 1994, pp. 1–3, 23–25.
2Odoni, A. R., Bowman, J., Delahaye, D., Deyst, J. J., Feron, E., Hans-

man, R. J., Khan, K., Kuchar, J. K., Pujet, N., and Simpson, R. W., “Exist-
ing and Required Modeling Capabilities for Evaluating ATM Systems and
Concepts,” TR ICAT 98-2, Massachusetts Inst. of Technology International
Center for Air Transportation, Cambridge, MA, 1997.

3Jim, H. K., and Chang, Z. Y., “An Airport Passenger Terminal Simulator:
A Planningand Design Tool,” SimulationPractice and Theory, Vol. 6, No. 4,
1998, pp. 387–396.

4Kheir, N. A., “Continuous-Time and Discrete-Time Systems,” Systems
Modeling and Computer Simulation, edited by N. A. Kheir, Marcel Dekker,
New York, 1996, pp. 27–88.

5Beltrami, E., Mathematics for Dynamic Modeling, Academic Interna-
tional Press, Boston, 1987, pp. 66–68.

6Press, W. H., Flannery, B. P., Teukolsky, S., and Vetterling, W. T., Nu-
merical Recipes in C— The Art of Scienti� c Computing, 2nd ed., Cambridge
Univ. Press, New York, 1992, pp. 707–709, 714–723.

7Fahrland, D. A., “Combined Discrete Event Continuous Systems Simu-
lation,” Simulation, Vol. 14, No. 2, 1970, pp. 61–72.

8Fishwick, P. A., “A Taxonomy for Simulation Modeling Based on Pro-
gramming Language Principles,” IIE Transactions, Vol. 30, No. 9, 1998,
pp. 811–820.

9Wickens, C. D., Mavor, A. S., and McGee, J. P. (eds.), Flight to the
Future: Human Factors in Air Traf� c Control, National Academic Press,
Washington, DC, 1997, pp. 210–214.

10Hanke, C. R., “The Simulation of a Large Jet Transport,” NASA CR-
1756, 1971.

11Johnson, E. N., and Hansman, R. J., “Multi-Agent Flight Simulation
with RobustSituationGeneration,”Massachusetts Inst. ofTechnologyAero-
nautical Systems Lab. Rep. ASL-95-2, Cambridge, MA, 1994.

12Stevens, B., and Lewis, F., Aircraft Control and Simulation, Wiley, New
York, 1992, pp. 51–109.

13Corker, K. M., and Pisanich, G., “Cognitive Performance for Multiple
Operators in Complex Dynamic Airspace Systems: Computational Repre-
sentation and Empirical Analyses,” Proceedings of the 1998 42nd Annual
Meeting Human Factors and Ergonomics Society, Vol. 1., Human Factors
and Ergonomics Society, Santa Monica, CA, 1998, pp. 341–345.

14Friedman, L. W., The Simulation Meta-Model, Kluwer, Norwell, MA,
1996.

15Wieting,R., “Hybrid High-Level Nets,” Proceedings of the 1996 Winter
Simulation Conference, IEEE Publ., Piscataway, NJ, 1996, pp. 848–855.

16Cellier, F. E., “Combined Continuous/Discrete Simulation Applica-
tions, Techniques, and Tools,” Proceedings of the 1986 Winter Simulation
Conference, IEEE Publ., Piscataway, NJ, 1986, pp. 24–33.

17Kettenis, D. L., “An Algorithm for Parallel Combined Continuous and
Discrete-Event Simulation,” Simulation Practice and Theory, Vol. 5, No. 2,
1997, pp. 167–184.

18Cubert,R. M., and Fishwick, P. A., “Modelingthe SimulationExecution
Process with Digital Objects,” Proceedings of SPIE Conference on Enabling
Technology for Simulation Science III, Vol. 3696, Society of Photo-Optical
Instrumentation Engineers, Bellingham, WA, 1999, pp. 2–22.

19Koo, T. K. J., Ma, Y., Pappas, G. J., and Tomlin, C., “SmartATMS: A
Simulator for Air Traf� c Management Systems,” Proceedings of the Winter
Simulation Conference, IEEE Publ., Piscataway, NJ, 1997, pp. 1199–1205.

20Liu, J., Liu, X., Koo, T. K. J., Sinopoli, B., Sastry, S., and Lee, E. A.,
“A Hierarchical Hybrid System Model and Its Simulation,” Proceedings of
the IEEE Conference on Decision Control, Vol. 4, IEEE Publ., Piscataway,
NJ, 1999, pp. 3508–3513.

21Bezdek, W. J., Halley, T. A., and Hummel, P. C., “Model Reuse for
Software Development and Testing: The Application of Common Interfaces
to Support Variable Fidelity Models,” AIAA Paper 97-3799, Aug. 1997.

22Davis, P. K., and Bigelow, J. H., “Experiments in Multiresolution Mod-
eling (MRM),” Rept. MR-1004-DARPA, Rand Corp., Santa Monica, CA,
1998.

23Pritchett, A. R., and Ippolito, C., “Software Architecture for a Recon-
� gurable Flight Simulator,” AIAA Paper 2000-4501,Aug. 2000.

24Law, A. M., and Kelton, W. D., Simulation Modelingand Analysis, 2nd
ed., McGraw–Hill, New York, 1991, pp. 8–10.

25Mirtich, B., “Timewarp Rigid Body Simulation,” SIGGRAPH 00, As-
sociation for Computing Machinery, New York, 2000.

26Jefferson, D. R., “Virtual Time,” ACM Transactions on Programming
Languages and Systems, Vol. 7, No. 3, 1985, pp. 404–425.

27Carothers, C. D., Perumall, K. S., and Fujimoto, R. M., “Ef� cient Opti-
mistic Parallel SimulationsUsing Reverse Computation,”ACMTransactions
on Modeling and Computer Simulation, Vol. 9, No. 3, 2000, pp. 224–253.


