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Analysis of large, complex systems requires simulations of hybrid-system dynamics (i.e., dynamics best described
by a combination of continuous-time and discrete-event models) and their interactions. To serve as valuableresearch
tools, such simulations must also be computationally efficient, readily modifiable, capable of simulating systems
using models of a wide range of fidelity, and easily reconfigurable to simulate parts or all of the system of interest.
The development of a simulation architecture meeting these criteria is described. Issues with its development are
described conceptually, and its application to safety analysis of the national airspace system is discussed. In partic-
ular, an object-oriented approach to hybrid-system simulationis detailed, and computationallyefficient methods of
updating the simulation are described and compared. New asynchronous with resynchronization methods of timing
individual objects are applied in an example, demonstrating a significant improvement in simulation efficiency.

Introduction

ANY large, complex systems are hybrid in nature (i.e., they

need both continuous-time and discrete-eventmodels to de-
scribe their behavior), and these models are not separable, but in-
stead must interact in significant ways. A simulation capable of
recreating these hybrid-system dynamics provides an analysis tool
that can dramatically change the design process. In electronics,
for example, integrated circuits were purposely designed to have
components spaced far apart until simulations capable of predicting
electromagneticinterference could be used to analyze and redesign
smaller chips.! Many aerospace systems also are best captured by
hybrid-systemsimulations,ranging from aircraft with flight control
systems that change modes, to on-board systems with discontinuous
behaviors such as open-closed mechanisms.

Take, for example, the task of performing safety analysis on the
national airspace system (NAS). Merely simulating the trajectories
of the aircraft would not capture the discrete actions of controllers;
likewise, continuous-time simulation architectures would not be
well suited for inserting aircraft into the airspace at random times
or for the stochasticinjection of disturbances. Elements of NAS dy-
namics have most often been simulated using purely discrete-event
simulations such as SIMMOD?; however, such models do not have
the resolution to capture a range of safety issues. Similiarly, hybrid-
system simulations have been made of the NAS such as TAAM and
HERMES, but these are typically limited to specific applications,
specific model resolutions, or isolated parts of the NAS.>?

To serve as an effective design tool, simulation of large-scale
systems must also meet a number of practicalrequirements.First, the
simulation should be rapidly reconfigurable. As a practical matter,
thiseases the costof developinga simulation;rapid reconfigurability
alsoallows for the simulation to be appliedto a range of applications
and to accommodate models of varying form and fidelity as needed
for the task at hand. In addition, the simulation should be sufficiently
computationallyefficientthatit can providea time-effectiveanalysis
tool, even when large numbers of runs are required.

This paper discusses issues involving hybrid simulation, with the
thesis that many of these issues can be solved by an object-oriented
software architecture. Such an architecture handles the communi-
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cation between objects without needing to treat objects differently
based on the type of their underlying model, thereby meeting the
rapid reconfigurability requirement. Likewise, this type of architec-
ture can be constructed to control the timing and updating of the
elements in a computationally efficient manner.

First, a comparison is made of the fundamental differences and
similarities between continuous-time and discrete-event models.
Then the test case used in this paper, the safety analysis of the NAS,
is described. Conceptual issues in, and requirements of, hybrid-
system simulations are discussed, and then a simulation software
architecture is presented. Methods of controlling simulator timing
are described, illustrated by comparisons from the test case and
a specific demonstration from a simulation of a standard terminal
arrival route (STAR).

Background: Discrete-Event
and Continuous-Time Models

Important, fundamental differences exist between discrete-event
and continuous-time models, as shown in Table 1. Discrete-event
models typically attempt to define the state of a system by categoriz-
ing whether conditionsexist or by quantifyingthe number of entities
within a category. Therefore, they can describe the system without
attempting to capture internal dynamics. Their defining parameters
stipulate how and when states will transition from one to another.
These parameters are typically set by experimental observation of
existing systems to capture the stochastic nature of the system. As
such, discrete events are well suited for modeling systems made
of multiple entities with no internal dynamics of relevance to the
type of analysisbeing conducted,and discrete-eventmodels usually
require study of an established system to ascertain their parameters.

Continuous-time models, on the other hand, usually attempt to
model the internal dynamics of system components. System state
is typically defined as a measure of the magnitude and distribution
of energy within the system, such as vector-valued measures of po-
sition and velocity. These models are often physics-based, that is,
they can be developed before the system is built and can be mea-
sured. However, these models are usually described by differential
equations, which can be computationally expensive to propagate
forward through time. (A related model type, that of discrete-time
systems, is modeled using difference equations* and can be treated
as a special class of continuous-time models.)

These two types of models, applied to the same system, tend to
have very different rates at which the states need to be updated.
Continuous-time models are solved through numerical integration
(or transition) algorithmsthat approximate the continuousvariations
by updates at discrete intervals. These intervals (or time steps), at
the very least, must be at twice the rate that the dynamics of interest
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Table 1 Comparison of continuous-time and discrete-event models

Attribute Continuous-time models

Discrete-event models

System being
simulated
Definition of system

Specific mechanical unit with
complex functioning

of energy within system

Typical measures of

system state
Typical factor

driving updates
Common purpose

of simulation
Common uses

(deterministic)
Time

Design and analysis of unit,
(real-time) training

Continuous and vector-valued,
state for example, magnitude and distribution

Position, attitude, and velocity

Analyze deterministic dynamic
behavior of a mechanical unit

Multiple, often simple, entities

Discrete, for example, categorization of
current system properties

Queue size, incidence
(statistical properties thereof)
Transitions from state to state

Analyze stochastic nature of
interactions between entities

Analysis and planning of
operations with multiple entities

occur to capture their basic properties’; in most applications, the
time step is set much smaller than this to reduce error in the numer-
ical solutions® Discrete events, on the other hand, typically capture
fairly large changes in dynamics and need to occur less often. In
some cases, the update rates for the two types of models may differ
by several orders of magnitude.

Comparisons of these two types of models are conceptualdistinc-
tionsonly. Ithas been provenpossibleto incorporatemodels of either
type into simulation software intended for the other. For example,
continuous-timemodels have been merged into discrete-eventsim-
ulations by fitting updates in their state values into mechanisms for
discretetransitionswith fixed, small transitiontimes. However, it has
also been noted that such cross-implementation often requires re-
strictive assumptions on the models, limits their accuracy, increases
the complexity of the software, and oftenresultsin a computationally
inefficient simulation.”-3 Thus, these differencesare of dramatic im-
port to the simulation designer because the simulation architecture
is typically tailored to the type of model implicit in the simulation.

Test Case: Safety Analysis of the NAS

At its full extent, the NAS is a system of overwhelming com-
plexity. Thousands of aircraft may be aloft at one time; hundreds of
controllersare monitoring and directing them with the assistance of
many communication and surveillance technologies. Furthermore,
distinctions must often be made between the differenttypes of con-
trollers (ground, tower, terminal area, en route, etc.) and their hierar-
chies; likewise, aircraftcan be of many differenttypes with different
performance, and their pilots may have a wide range of goals and
levels of experience.

The behaviorof the NAS, to a great extent, is defined by the inter-
action of these different elements. The NAS can not be modeled as
a collection of independent aircraft flying simultaneously;instead,
controllers (and pilots) are constantly changing direction of flight
in response to the actions of others and to changes in the environ-
ment. These interactionsmay meet a number of goals, ranging from
time-critical collision avoidance maneuvers to strategic plans for air
traffic flow management.

To meet increasingcapacity demands and stricter safety demands,
the NAS is being upgraded. These upgrades range in scale from
near-term equipment improvements to longer-term calls to change
the manner in which controllers and pilots interact.

Changing sucha large and complex system creates a design prob-
lem of vast scale. For both cost and safety reasons, changes should
be analyzed thoroughly before implementation. The worth of this
analysis will be measured by its ability to predict and correct prob-
lems before implementation. Simulation and modeling have been
recognized as a critical part of this analysis.

The NAS has been simulated before. However, most of these
simulations have not been suitable for large-scale safety analysis.
Instead, many NAS simulations have been motivated by studies of
efficiency. Therefore, these simulations have been concerned with
values such as aircraftinterarrival times or flight delays. These con-
cerns are best abstracted by macroscopic models and, hence, have
usually been covered by discrete-event simulations or simulations
with very simple models of aircraft behavior?>

Safety, on the other hand, is largely determined by continuously
evolving interactions that macroscopic discrete-event simulations
can not capture. For example, a macroscopic simulation may model
when two aircraft arrive at an airport; without detailed modeling
of their continuous trajectories, however, it is nearly impossible to
ascertain accurately whether these two aircraft came unacceptably
close during their flights, or to model the performance of humans
such as pilots and controllers with suitable resolution. Therefore,
simulation suitable for safety analysis needs better resolution of
some parts of the system than can be readily provided by discrete
events alone.

The most notableelementrequiringadequateresolutionis the tra-
jectory of the aircraft itself. Because they are most accurately rep-
resented by differential equations, aircraft trajectories are usually
best modeled as continuous-time objects. Fortunately, many excel-
lent models are currently available at all levels of fidelity, ranging
from outer-loop models of the aircraft’s guidance to detailed inner-
loop models of the aircraft’s flight dynamics.'°~'> These models
are physics based, which allows their parameters to be estimated (if
not exactly known), and brings predictive power to the simulation
where novel NAS changes are to be simulated before measurements
of actual dynamics can be observed.

Other elements of NAS behaviorremain best modeled as discrete
events, for a variety of reasons. Some elements can be predicted to
occur discretely; for example, the generation of a queue of aircraft
waiting for taxiclearanceto the takeoff runway is discretein nature.
Other elements of the NAS are not needed at a fine resolution,
and so computational effort can be saved by reducing them to a
notable state; for example, a detailed, computationally expensive
continuous-time model of an aircraft waiting for takeoff can be
temporarily replaced by a notation in the takeoff queue. Finally,
discrete events can be used to inject stochastic phenomena into the
simulation, such as errors and failures, as well as disturbances into
aircraft and human performance model parameters.

Measurementsof NAS safety can also be treated as discreteevents
that occur when threshold conditions in the environment are met,
such as loss of separation between two aircraft. Unlike normal dis-
crete events, these measurements do not need to trigger subsequent
eventsin the simulation,beyondrecordingthe eventto an outputfile.
However, these measurements can share the computational struc-
tures that are used for other discrete events.

Of critical importance in NAS safety simulation is inclusion of
human performance models because their behavior drives system
dynamics. Their behavior should not be typecastinto either contin-
uous or discrete forms; in addition, many established models would
be difficultto convertto fit within any one rigidly defined simulation
architecture.For example, many human performancemodels can be
based on procedures or expert systems that call for isolated actions
to be triggered by conditions in the environment (discretely) while
also maintaining a continuously evolving valuation of workload or
working memory content.'3

Therefore, a simulation architecture capable of accommodating
the many different types of models can provide a valuable re-
search tool. For such a tool to also be cost effective, it must also
be rapidly reconfigurable. This reconfigurability can allow for the
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same architecture and models to be used in simulations of different
elements of the NAS and in simulations with different purposes, for
example, capacity studies vs detailed safety analysis. Thus, a cor-
responding benefit of reconfigurability can be a dramatic reduction
in the cost of developing a simulation through the reuse of models
and computational structures.

Hybrid-System Simulation Concepts

Incases where an elegant,analyticsolutioncan notbe foundto an-
alyze a system represented by purely discrete-eventor continuous-
time models, a hybrid-system simulation is required to calculate
system dynamics through time. Several approaches have been sug-
gested for the design of hybrid-system simulations. Some create
larger metamodel frameworks in which each type of simulation
functions separately.”'* Other solutions have adapted existing sim-
ulations of one type to include the other.!>!%

A third approach, sometimes called the fully integrated app-
roach,' seeks to create new software that inherently accepts the two
model types. Such approaches have been undertaken with special
modelinglanguages®'"~? This paperwill instead focus on software
architectures (not necessarily written in special languages) that can
accept models of any type, control their timing in computation-
ally efficient mechanisms, and handle communication between the
objects.

Earlier sections have highlighted the differences between the
models used in hybrid-system simulation. A simulation architec-
ture can capitalize on the abilities these models share: to update
themselves when required, to report when their next update is re-
quired, and to report interactions with other objects that warrant a
joint update.

At ahigh level, a simulation architecture can require components
to meet these three interfacerequirements. All other dynamics of the
components can remain internal to their models, without requiring
intervention by the larger simulation architecture. This internalism
can be considered a feature. It prevents fundamental restrictions on
the type of model allowed in the simulation, and as such, it allows
for the simulation to include components of various resolutions as
required by the task at hand.?!"??

Without placing restrictions on components’ models, the simu-
lation architecture also needs to support their interactions. These
interactions may take several forms. Traditional to continuous-time
simulation is coupling between different continuous-time objects,
such as two aircraft flying in formation (or executing avoidance ma-
neuvers) and, therefore, reacting to the movements of each other. A
discrete event may also impact a continuous-time object in several
ways: It may enact a discrete change in the variables maintained by
the continuous-timeobject (such as a sudden change in acceleration
due to the application of brakes or engine failure); it may change
a parameter’s value within the continuous-time object (such as a
change in stability derivatives in response to a discrete change in
aircraft configuration); or it may swap in a whole new continuous-
time model better suited to the situation (such as inclusion of a
higher fidelity aircraft model at the start of an avoidance maneuver,
or a switch to a taxiing aircraft model after landing). Conversely,
continuous-timeobjects can interact with discrete events when their
values correspond to the events’ triggers.

Within a simulation framework that supports such interactions,
the simulationdesigneris able to make components work efficiently
on their own. For example, in modeling an aircraft with onboard
systems that have discrete dynamics, the simulation designer has
choices beyond the usual requirement that these two behaviors be
kept common in one model, despite their two different timescales.
Instead, the designer has the option of making the onboard systems
into a separate discrete-event model that communicates appropri-
ately with the continuous-timemodel of the aircraftdynamics. Such
an approachallows the simulationdesignerto separate behaviorsac-
cording to the times at which they will need to be updated without
substantial reworkings within individual components.'”

Although a simulation’s operation does not depend on measure-
ments, the desire for accurate measurements is typically the mo-
tivation for the simulation. In many cases, the measurements are
temporal in nature, and, hence, it is important that a measurement

be taken exactly when it occurs. One approach is to make mea-
surements an active element by treating them as discrete events that
must report when they must next be updated. This projected up-
date time can be a conservative estimate of when the conditions
wanting recording may next occur. Although this process requires
measurements to have a predictive power, it also reduces the need
for unnecessary measurements. This also mirrors a duality between
measurements and conditionally based discrete events; whereas the
former have no lastingimpact on simulation dynamics, the latter are
measurements with a consequence.

Based on this discussion, several requirements for a hybrid-
system simulation architecture may be summarized. First, the simu-
lation architecture should not place unnecessary limits on the types
of objects, but instead accommodate any components that can list
their update times and update themselves on command. Second, the
simulation architecture should facilitate communication between
objects, so that it is easy for the simulation designer to break apart
models according to their functionality and update rates, withoutre-
quiring lengthy communication standards to be developed. Finally,
the simulation architecture should be capable of timing the updates
of the individual componentsin a computationallyefficient manner.

Simulation Architecture

The preceding sections discussed conceptual issues with hybrid-
system simulation. This section discusses a particular simulator ar-
chitecturedesign. This architectureextends the reconfigurable flight
simulator software, which was originally designed for more tradi-
tional applications of flight simulation?3

This architecture allows for the inclusion of several broad classes
of objects, as shown schematically in Fig. 1. An arbitrary num-
ber of vehicles can be added to the vehicle list. These components
must fit a base interface for vehicles, which was designed to support
continuous-time models of vehicle dynamics; for specific applica-
tions, base interfaces have also been defined for aircraft and for
spacecraft. Several vehicle components, including six-degree-of-
freedom and waypoint-following aircraft, have been developed and
can be used or extended by other developers.

Beyond these capabilities as a normal flight simulator, an arbi-
trary number of controller, event, and measurement (CEM) objects
can be added to a dedicated list. The base interface standards for
these objects are less specified, allowing flexibility in the objects’
behaviors. Components that have been added to date include ran-
dom aircraft generators that place aircraft into airspace according
to a given distribution of interarrival times, basic air traffic con-
trollers that determine aircraft sequencesin merging arrival streams
and then command speeds to aircraft to maintain proper spacing
within the traffic streams, and measurementobjects that look forand
record events specified in a text script. The flexibility of this type
of component allows for many other types of human performance
models, discrete-eventgeneration,and measurementcomponentsto
be added as desired.

Other types of components are also available in the simulation
architecture as support for hybrid-system simulation needs. Most
of the components needed for this application are already estab-
lished, but these components can be modified or added to as desired.

SimulationObject

MasterSimController|

l l l |

CEMObject |O0bjects Vehicle
List List List i
Environment
CEM o || Vehicle || Controlier
Object [ 1] Object Object And
1 ? 1 Database
CEM ||| 7o ] Vehicle || (ECAD)
Object Object Object
| 1 1
CEM ||| l{e} L Vehicle ||
Object Object Object
1 i !
T H

Fig. 1 Schematic of component classes in simulation architecture.
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Input-output (I/0O) objects provide mechanisms for graphical output
of the simulation (such as an air traffic control screen and text out-
put of commands given by controllers) and for data recording of the
measurements. The environmentcontroller and database providesa
common simulationenvironmentfor all of the componentsby estab-
lishingcommon axis definitionsand conversionsand by allowing for
the inclusion of atmospheric and terrain models as desired. Finally,
a networking object can be included to handle communications be-
tween simulations run on multiple machines over a network; this
networking is transparent to the rest of the simulation and, there-
fore, does not require recompilationof components to use or access
networking functions.

To functionas a hybrid-systemsimulation,each continuous-time,
discrete-event,and measurementobjectis required to meet the min-
imal standards of a standard interface. Specifically, each of these
components must update its state on command, report the time of its
nextupdate (or, in the case of some measurementand discrete-event
objects, the next time at which an update might occur conditionally
on other events), and identify whether its own update requires any
other objects to also update.

For continuous-time objects, a required input is an upper bound
on the numerical error allowable in each time step. With this input,
the nextupdate time is calculated based on knowledge of the interior
dynamics; algorithms for such adaptive time step calculations are
well established

Communications between objects are handled by the high-level
simulation object. Therefore, the designer of a hybrid-system sim-
ulation using this architecture does not need to develop commu-
nication standards beyond giving individual components the abil-
ity to send and receive messages. Many standard messages can be
passed through the base interface standards of vehicle and con-
troller/measurement objects. Those messages that do not fit within
the base interface standards can be sent through the simulator ob-
jectviathe object data/methods extensions protocol, which requires
sending a message to the simulator object along with a request for
its destination ?* This mechanism also allows for objects to request
the creation or destruction of other objects; for example, a random
aircraft generator can request the additionof a new aircraftto the ve-
hicle list, with subsequentmessages to that new aircraft that provide
it with initialization data.

This architecture, therefore, provides an overall framework that
can simulate any NAS configuration at any level of fidelity. It is
configured by incorporating new components during run time as
specified by initialization commands and operator input. Thus, de-
velopmentof a new configurationdoes notrequire a new or different
simulation architecture;instead, the development of new initializa-
tion scripts describes the simulator configuration, and the inclusion
of new or modified components can extend the models used in the
simulation.

Efficiency and Timing Methods

In large-scalesimulation, concerns with computationalefficiency
extend beyond making each componentindividuallyefficient. Over-
all efficiency is achieved when each object updates only when
needed to meet several criteria: accurate modeling of its interior
dynamics, correct interaction with other objects, and timely mea-
surements.

Any unnecessaryupdatesof objectsmay be consideredwasted use
of the processor. However, methods of decidingwhen an updatemay
be required for correct interactions or measurements are generally
nonexact once the simulation is run in a configuration containing
stochasticelements and/or is nontrivialin size. Likewise, the amount
of computation required by the most sophisticated timing methods
may be significant and can slow down the simulation.

Even measuring the computationalefficiency of a simulation can
be nontrivial. Once the simulation includes stochastic elements, it
can be difficult to compare with certainty the relative speed of differ-
ent update timing methods without a large number of runs because
the simulation runs will have different system dynamics due to the
inclusionof random disturbancesor anomalies. Likewise, measures
of simulation efficiency based on run time are highly sensitive not

only to the specific scenario under test and basic processor speed,
but also to many other aspects of the simulation hardware such as
data-access speed, memory size, etc.

This section will compare differenttiming methods and illustrate
their effect on a representativesimulation using the architecture de-
scribed in the preceding section. Then trade-offsin the fundamental
characteristicsof these methods are discussed, and alternativemeth-
ods are commented on.

Timing Methods

Two major factors define the variety of methods for determining
the timing of simulationcomponents: the firstis selectionof how the
time step is set (next-event time advance, or fixed-increment time
advance)**; the second is selection as to whether the simulation will
be entirely synchronous, that is, all components update at the same
time; partially synchronous and partially asynchronous;or entirely
asynchronous, that is, all components update individually.

Several timing methods can be defined by these two factors, as
follows.

Synchronous Fixed Time Step

This timing method updates all objects at the same time, with the
time step externally fixed through the simulation. This method is
commonly used in current flight simulation techniques, where the
time step may be fixed by conservative analysis of the fastest dy-
namics in the system, or by the system clock in real-time simulation.
This method is very basic and is often the first step in the develop-
ment of a hybrid-system simulation. It also provides conservative
results that can be guaranteed to not miss any measurements or in-
teractions by the setting of an arbitrarily small time step, without
requiring predictions from discrete-event or measurement objects.
However, it also forces all objects to update at a rate governed by a
conservative, worst-case estimate of the dynamics of the component
with the fastest response, which is computationally inefficient.

Synchronous Variable Time Step

This timing method has all of the objects update at the same time,
but varies the update time from one time step to the next to meet the
needs of the simulation. For instance, the update time may be chosen
by polling all objects for their desired time step and then selecting
the worst-case (smallest) time step. This method still forces some
objects to update more often than they would require when running
alone, but it can relax the time step when conditions allow.

Asynchronous with Resynchronization

This timing method allows for components to be updated inde-
pendently following their own update times. This is shown schemat-
ically in Fig. 2 for a simulation with four aircraft, a random aircraft
generator (RAG) and a measurement object; the aircraft and RAG
update at their own rates until a measurement requires a complete
synchronization. This allows for objects with fast dynamics to up-
date frequently without requiring other objects to be bound by such
small time steps. However, this method also allows for objects that
interact, or that measure interactions, to require all objects (or spe-
cific objects) to resynchronize when it is time for their update, with
the result thatinteractionsand measurementscan be based on values
from temporally collocated objects.

This timing method requires a state-updater object to maintain
a list of the objects within the simulation, sorted by the time of

Aircraft #12 | =—=—=————
Aircraft #98 | =—>=———>x
Aircraft #76
Aircraft #34
RAG

Measurement

| Resynchronization

I

Time —

Fig. 2 Schematic of asynchronous simulation with resynchronization.
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List of Aircraft #27 Tower Runway 26L
Objects | ™ pijot () § Chief (H) [Arrivals (D)]
Autopilot(C Ground(H) |Departs (D))
QAircraft (C) T Local (H)
Takes Input From: Takes Input From: Takes Input From:
Local Controller TRACON Taxiing Aircraft
Proximate Aircraft Runway Queues Approaching Aircraft
L Dispatcher, etc. Aircraft, etc. etc. )
LEGEND

(C) - Continuous-Time Model
(D) - Discrete-Event Model
(H) - Human Performance Model

Fig. 3 Schematic of sorting of simulation components by update time,
with access by state-updater component.

Timing Method and Mean Inter-Arrival Time (sec)
—=— Synch. Variable Time Step 100
—=— Synch. Variable Time Step 300
+— Synch. Variable Time Step 500
= Asynch. w/ Resynchronization 100
= Asynch. w/ Resynchronization 300
~— Asynch. w/ Resynchronization 500

4500

4000-

35007

3000

2500

Average Number of Updates per Aircraft

0 200 400 600 800 1000

Number of Arrived Aircraft

Fig. 4 Average number of calls to aircraft objects during simulation
of a STAR comparing two timing methods, with varied mean aircraft
interarrival times.

their next desired update. This object is shown schematically in
Fig. 3. This state-updaterobject then controls the simulation timing
by identifying the next object to be updated, regardless of type,
querying that objectas to whether it requires other objects to also be
updated, and commanding the appropriate objects to update. Once
objects have been updated, they each are asked for their new update
time and are sorted accordingly.

Example: Simulation of a STAR

To compare the computational efficiency of these methods, a nu-
merical simulation was conducted using the architecture described
earlier. The simulationmodeled the stream of arriving aircraftflying
the Macey Two STAR into Atlanta-Hartsfield airport. Aircraft were
injected into the simulation stochastically with a specified inter-
arrival rate. A controller scheduled the aircraft from the multiple
entry streams into one arrival flow by selecting the appropriate or-
der of the aircraft and commanding speeds to the aircraft that would
create this desired traffic pattern. The aircraft were removed from
the simulation when they reached the runway.

The results of this simulation are shown in Fig. 4. Efficiency in
this case is measured by the average number of times aircraftobjects
are called to update duringthe course of the run due to both theirown
desired rate as well as forced resynchronizations. Aircraft are the

most computationallyintensive objectsin the simulation; therefore,
alower number of calls, on average, to individual aircraftrepresents
greater computational efficiency.

The data are shown for two timing methods. The synchronous
variable time step method required all objects in the simulation
to update at the same time, using the worst-case time step identi-
fied from all of the objects. In the asynchronous with resynchro-
nization method, the controller and measurement objects were al-
lowed to command a complete resynchronization at times when
they predicteda conflict might occur or the next command might be
warranted. The aircraft mean interarrival time into the arrival route
was also varied. The highest mean interarrivaltime (500 s) created a
fairly low traffic density, with commensurately few interactions. At
this mean interarrival time, the benefits of asynchronous simulation
are noticeable, but not dramatic.

The lowest mean interarrival time (100 s) created a high traf-
fic density, in which controller commands and aircraft maneuvers
in response to potential conflicts were often required. In the syn-
chronous variable time step method, this had the effect of requiring
many more updates for all aircraft on average. In the asynchronous
with resynchronization method, fewer updates were required over-
all because those aircraft needing updates at small intervals were
able to update independently.

Tradeoffs Between Resynchronization Intervals and Efficiency

In applications such as just shown in the case study, there appear
to be benefits to asynchronous timing methods. At first glance, this
appears to imply that the best efficiency will arise with the largest
resynchronization intervals, which allows the objects to run asyn-
chronously for significant portions of the simulation. However, two
main issues limit the size of resynchronizationintervals.

First, larger resynchronizationintervals require better (and more
computationally expensive) predictions by the individual compo-
nents about when a resynchronization may be warranted. Better
predictions require more extensive calculations;at an extreme, the
predictor would need to internally simulate other objects to predict
accurately when a problem might occur. As such, the value of better
predictionscan reach a point of diminishingreturns, where the addi-
tional computationsin the predictionsused to set resynchronization
intervals offset any savings in computations by the objects that are
affected.

Second, larger resynchronization intervals require better (and
model specific) predictions by the individual components about
when a resynchronization may occur. Simple predictions about a
potentialaircraftcollision, for example, can be made based on com-
monly available aircraft position and velocity; more accurate pre-
dictions require knowledge of aircraft internal dynamics and likely
future actions. This imposes an obvious development cost on the
simulation. It also makes such smart predictors difficult to use in
simulations where a large variety of objects may be involved in the
prediction, limits the use of the predictors to specific cases, and
reduces the ease with which the simulation can be reconfigured.

Alternatives to Resynchronization

Thus far, this discussion on simulation timing has assumed that
accuratemeasurementsand interactionscan only occur when the ob-
jects involved are temporally collocated, with the implication that
occasional resynchronizationis always required. It is also possible
for measurements and interactionsto be calculated from temporally
disjoint objects. Of course, such calculations tend to be more com-
plex, but with such a capability fewer resynchronizationsare needed
solely to make measurements or predictions about the future. How-
ever, at least partial resynchronizations will still be required when
predictedinteractionsrequire other objects to jointly manifesta new
behavior at a certain time, for example, a predicted collision avoid-
ance alert requiring two aircraftto synchronizeand communicate at
the start of the alert. Likewise, in a simulation with stochastic ele-
ments, such predictions can not be made with certainty and, hence,
remain susceptible to missed measurements.

Similiarly, it has been assumed that the simulation always runs
forward in time. This assumption generates conservative timing
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intervals to avoid missing any important interactions. For some ap-
plications, simulations capable of running backward to a potential
missed interaction are possible, with the benefit of relaxing timing
intervals =27 However, these rollback or timewarp simulations can
fit better in some domains than others; some types of models are
easier to either run backward or store their recent state space so that
the simulator can be backed up to before the missed problem (such
methods have most commonly been applied to systems with purely
discrete dynamics or very simple continuous-time models). Like-
wise, these methods incur a computational cost and, hence, should
be used wisely.

Conclusion

This paper has discussedissues relating to simulating large, com-
plex systems as an analysis method during their design. Hybrid-
system simulation is an emerging field of interest with the poten-
tial to provide such an analysis tool. Simulation of the NAS for
safety analysis was used as a test case throughout the paper, with a
specific simulation configuration detailed as an example. This ap-
plication shares many of the qualities (and requirements) of other
aerospace systems. For example, large-scale simulations of many
operationalsystems are now being proposed,includingmilitary mis-
sion planningand spacecraftlaunch and range operations. Likewise,
detailed analysisof a single vehicle’s avionics systems requires sim-
ulating both aircraft dynamics and discrete transitions in mechani-
cal, electronic, and software onboard systems.

Several open issues remain with hybrid-systemsimulation. Some
can be addressed by software architectures. This paper suggested
thatsuch an architectureshould place few restrictionson the types of
models allowed, so that it can be used for a variety of purposes and
with components of varying fidelity and resolution; this also has the
practical benefit that existing models can be used without substan-
tial restructuring. The behavior and performance metrics of hybrid
systems both rely on interactions between individual components;
as such, a simulation architecture also needs to capture accurately
and/or create these interactions.

Methods of making the simulationas computationallyefficient as
possible are important. Rather than reducing the need for computa-
tionalefficiency,recentimprovementsin computationalpower have,
for the first time, allowed the research community to hope that very
large, very complex systems can be simulated in detail. As these
simulations become more widely used, there may be increasing de-
mand for more fidelity, more accuracy, and for more simulationruns
in an analysis seeking statistically verifiable results.

Methods of timing object updates within a large-scale, hybrid-
system simulation have been identified as a research topic requiring
investigation.® This paper discussed timing the updates of individ-
ual objects within a large-scale simulation. Two specific mecha-
nisms were discussed: variable time steps and asynchronous simu-
lation with occasional resynchronizationto capture measurements
and interactions. A simulation architecture was described that met
the requirements and mechanisms discussed in the paper. This
simulation architecture uses an object-oriented framework to ac-
cept objects of a wide variety of types, easily incorporating both
continuous-time and discrete-event models. As an example, this
simulation architecture was used to simulate the dynamics of a
STAR; methods of improved simulation timing were found to in-
crease significantly computational efficiency of the simulation as a
whole.
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